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The active control of a plane sound wave in a semi-infinite waveguide can require a
controller with a long weighting function. In a real system constrained to act on-line, the
signals are sampled and the weighting function is truncated. Both the sampling rate and
the number of coefficients of the adaptive digital filter acting as controller have important
effects on active attenuation of noise. The optimal truncated weighting function is therefore
determined in order to compare their respective effects. The optimal set-up point of these
parameters is then found for a primary excitation consisting of a white noise convolved
with an ideal low pass filter. It is shown that the optimal active attenuation depends on
two non-dimensional parameters that are composed of four quantities: the speed of the
processor, the loss coefficient in the waveguide, the location of the secondary source and
the cut-off frequency of the low pass filter.
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1. INTRODUCTION

The control of a plane wave in an acoustic waveguide has been identified by Lueg [1] in
1934 as the first candidate application for active noise control. It has however only been
during the eighties that the development of adaptive signal processing has enabled
applications to be made in an industrial duct system [2].

One of the most common adaptive algorithm for the control of a stationary random
excitation is the filtered X-LMS presented by Widrow et al. [3, 4]. A detection sensor
provides a reference signal which is supposed to be well correlated with the primary noise
whereas an error sensor provides the error signal which has to be cancelled. Information
coming from these two signals enables the adaptive filter of the controller to be updated.
The convolution of the reference signal with this adaptive filter gives finally the electric
signal that feeds into the secondary source.

Several physical and signal processing effects are known to limit the efficiency of active
noise control [5]. First, systems are constrained to act causally with respect to the primary
source: i.e., the secondary source cannot emit a signal before the detection sensor has
detected a primary excitation. So the weighting function must be zero for negative times.
The efficiency of an active control has been assessed by Nelson et al. [6] as a function of
the acoustic delay and ‘‘predictability’’ of the primary source output. Moreover electrical
delays due to anti-aliasing and the reconstruction filter must be added to the acoustic
propagation delay. So the different electronical delays must be less than the physical
propagation time between the detection sensor and the secondary source to ensure the
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constraint of causality. These practical components impose therefore a geometric
constraint on the active noise control system [7].

Second, systems are constrained to act on-line. That means that digital filtering and
adaptation must usually be performed by the processor in a computation time less than
the sample time. This constraint imposes a limitation on the number of coefficients of the
adaptive filter involved in the filtered X-LMS. So the weighting function is truncated: i.e.,
it is zero for times greater than its length. The sampling imposes furthermore the use of
anti-aliasing filters.

The sampling rate and the length of the adaptive filter both influence the results of active
control. Duhamel [8] evaluated their effects in the case of a control around a noise barrier.
The present work is devoted to the detailed study of their respective influences on the active
control of a plane sound wave in a semi-infinite lossy waveguide with a stationary random
excitation. The choice of the reference signal in a semi-infinite waveguide conditions the
shape of the weighting function. In the case of an independent reference signal (i.e.,
receiving no feedback coming from the secondary source) the control requires a long
weighting function. The truncation of the weighting function can therefore largely reduce
the active attenuation.

The objective of this work is to determine the optimal truncated weighting function of
the controller in order to predict the active attenuation with respect to frequency. It is
pointed out that the truncation limits this attenuation in narrow bands of frequencies. The
use of anti-aliasing filters then forbids any control at frequencies greater than half the
sampling frequency.

When the primary excitation is a white noise convolved with an ideal low pass filter,
some requirements are presented for the set-up of the parameters (sampling rate, length
of the adaptive filter). It is shown that the optimal active attenuation depends on two
non-dimensional parameters that are composed of four quantities: the speed of the
processor, the loss coefficient in the waveguide, the location of the secondary source and
the cut-off frequency of the low pass filter.

2. DEFINITION OF THE REFERENCE AND ERROR SIGNALS

Let t denote the time and v the angular frequency. Consider a semi-infinite lossy
waveguide with a square cross-section of area S equal to a2. A point monopolar primary
source with volume velocity qp(t) is located at the upstream termination of the waveguide.
A point monopolar secondary source with volume velocity qs(t) is located at the distance
x0 from the upstream termination (see Figure 1). The upstream termination is supposed

Figure 1. Active noise control system with feedback.
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to be a perfectly reflective termination whereas the downstream termination is anechoic.
Let k	 denote the wavenumber, equal to v/C0 + ja where C0 is the speed of sound, j the
imaginary unit and a the loss coefficient, which is positive (aq 0) and assumed
independent of frequency to simplify the problem. The real part of k	 is denoted by k. Let
x be the distance from the upstream termination and p(x, t) the sound pressure field. The
dimension a in the cross-section is assumed small with respect to the wavelength l of the
signal so that the sound pressure can be considered independent of the other co-ordinates
y and z. The Fourier transform of the sound pressure p(x, t) is

p(x, v)=g
a

−a

p(x, t) ejvt dt. (1)

The Fourier transforms of the volume velocities qp(t) and qs(t) are qp(v) and qs(v). The
sound pressure field p(x, v) satisfies the Helmholtz equation and two boundary value
equations:

d2p
d2x

(x, v)+ k	 2p(x, v)= r0jv
qs(v)

S
dx0,

(dp/dx)(0, v)= r0jvqp(v)/S, (dp/dx)(a, v)= jk	 p(a, v). (2)

dx0 is the unidimensional Dirac delta function at point x0. The solution of the problem (2)
has the following expression (see Appendix A for the details of the solution):

p(x, v)= [qp(v)/S]Zp(x, v)+ [qs(v)/S]Zs(x, v),

Zp(x, v)=
r0C0

1+ j(C0a/v)
ejk	 x [x, Zs(x, v)=Zp(x, v) cos (k	 x0) [xe x0,

Zs(x, v)=Zp(x0, v) cos (k	 x) [xE x0. (3)

If the sensors are unidirectional an index + is used to indicate that the sensors detect only
downstream waves:

p+(x, v)= [qp(v)/S]Zp(x, v)+ [qs(v)/S]Z+
s (x, v),

Z+
s (x, v)=Zp(x, v) cos (k	 x0) [xe x0, Z+

s (x, v)=Zp(x0, v) ejk	 x/2 [xE x0.

(4)

2.1.    

Let an error signal be denoted as E(v) and a reference signal as X(v). The error sensor
is supposed to be an ideal omnidirectional sensor located at a distance x (with xe x0) from
the upstream termination. The detection sensor is also supposed to be an ideal
omnidirectional sensor located at a distance l upstream from the secondary source. With
the previous notations, the signals E(v) and X(v) have the following expressions:

E(v)= p(x, v), X(v)= p(x0 − l, v). (5)

Let W1(v) denote the transfer function of the controller between the reference signal X(v)
and the volume velocity qs(v) of the secondary source.

W1(v)=
qs(v)
X(v)

=
Sqs(v)

qp(v)Zp(x0 − l)+ qs(v)Zs(x0 − l)
. (6)
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One is interested in the expression of this transfer function W1(v) when the error signal
E(v) is cancelled. If E(v) is equal to zero, qp(v)=−qs(v) cos (k	 x0). This leads to

W1(v)=S/[Zs(x0 − l)− cos (k	 x0)Zp(x0 − l)]

=
S

[cos (k	 (x0 − l))Zp(x0)− cos (k	 x0)Zp(x0 − l)]

=
1+ jC0a/v

r0C0

S
j sin (k	 l)

. (7)

This transfer function is close to the result of Eghtesadi and Levanthall [9]. This result
is actually independent of the type of terminations and is also valid for an infinite
waveguide. As pointed out by Nelson and Elliott [5], the controller has a large transfer
function at certain frequencies and a long weighting function. The transfer function when
the loss coefficient is small (i.e., 1/a is large with respect to the wavelength l) is

W1(v)=−
S

−r0C0

2
e−jk	 l −ejk	 l

=−
S

r0C0

2ejk	 l

1−e2jk	 l
. (8)

The binomial theorem enables one to expand the expression (1− z)−1 as a series of the
form aa

i=0 zm if =z=Q 1. With z equal to ejk	 l, one has =z=Q 1 since aq 0. The expansion of
the denominator of equation (8) then gives

W1(v)=−
2S

r0C0
s
a

i=0

e(2i+1)jk	 l. (9)

The inverse Fourier transform of the transfer function of the controller gives the following
weighting function:

W1(t)=−
2S

r0C0
s
a

i=0

e−(2i+1)al d(t−(2i+1)tl) (10)

where d is the Dirac delta function and tl = l/C0. The weighting function is written as
an infinite series of Dirac delta functions whose amplitude exponentially decreases with
time.

The two drawbacks of the previous system (large transfer function at certain frequencies
and a long weighting function) can be removed by the use of an ideal unidirectional
detection sensor instead of an omnidirectional detection sensor. One can then rewrite the
expression for the error signal, the detection signal and the transfer function W+

1 of the
controller with respect to the angular frequency as

E(v)= p(x, v), X(v)= p+(x0 − l, v), (11)

W+
1 (v)= qs(v)/X(v)=Sqs(v)/[qp(v)Zp(x0 − l)+ qs(v)Z+

s (x0 − l)], (12)

and one is now interested in the expression for this new transfer function W+
1 (v) when

the error signal E(v) is cancelled.
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J(W2
g ), representing the expected value of the squared sound pressure with the transfer

function Wg
2(v) of the controller:

J(Wg
2)=E[p2(x, t)]=

1
2p g

a

−a

Sp(x, v) dv

=Ap0r0C0

S 1
2e−2ax

2p g
vf

−vf

[1+Wg
2(v) cos (k	 x0)=2 dv. (65)

By introducing the expression for the transfer function Wg
2(v) in equation (65), J(Wg

2)
can be determined (see Appendix C) as

J(Wg
2)=Ap0r0C0

S 1
2

e−2ax62tf
−

2
tmax

sh [2(Mw +1)ax0]
sh 2(Mw +2)ax0]

e2ax07. (66)

Here tmax =max (tf , 2tg) and it has been supposed that the ratio 2t0/tmax is an integer, in
order to simplify the expression for the objective function. If this ratio is not an integer
but large enough, this expression gives a good estimate of J(Wg

2).
The active attenuation g can now be found. This is the ratio of the value of the objective

function without control to its value with control. Its expression in decibels is

g=10 log10 [J(0)/J(Wg
2)]=−10 log10 $1−

tf

tmax

sh [2(Mw +1)ax0]
sh [2(Mw +2)ax0]

e2ax0% . (67)

One can now introduce four non-dimensional numbers:

Tw = tw/t0 (time length), Tg = tg/tf (sampling period);

a0 = ax0 (loss coefficient), VDSP = t2
f fDSP/t0 (speed of the processor). (68)

The active attenuation g depends on three of them (Tg , Tw and a0):

g=−10 log10 [1−Gg(Tg)Gw (Tw , a0)]. (69)

Gg(u)=
1

max (1, 2u)
, Gw(u, a0)= e2a0

sh {2[Mw(u)+1]a0}
sh {2[Mw(u)+2]a0}

, Mw(u)=E$u2−
1
2% .

(70)

Equation (69) shows clearly that the active attenuation g depends separately on two
factors: the non-dimensional sampling period Tg and the non-dimensional time length Tw

of the weighting function. Their respective effects are summed up in the variations of the
functions Gg and Gw . These variations are presented in Figure 6. On the one hand the
function Gg decreases from 1 to 0 when the non-dimensional sampling period increases.
On the other hand the function Gw increases from 0 to 1 when the non-dimensional time
length of the controller increases. Whereas Gg is independent of the non-dimensional loss
coefficient a0, Gw is all the larger since this loss coefficient is large. It is known indeed that
a large loss coefficient reduces the detrimental effect of the upstream reflection. At first
sight, the optimal set-up point consists of a small non-dimensional sampling period Tg and
a long non-dimensional time length Tw . Unfortunately, when the active system is
constrained to act on-line, equation (63) must be satisfied and it forbids this ideal set-up
point.
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focus on the problem with an independent reference signal and find in this case the transfer
function W2(v) of the controller:

W2(v)= qs(v)/qp(v)=−1/cos (k	 x0)

=−2/(e−jk	 x0 + ejk	 x0)=−2ejk	 x0/(1+e2jk	 x0). (17)

Again using the binomial theorem in order to expand the denominator of equation (17)
yields

W2(v)=2 s
a

i=0

(−1)i e(2i+1)jk	 x0. (18)

The Fourier transform of the transfer function of the controller gives the weighting
function

W2(t)=−2 s
a

i=0

(−1)i e−(2i+1)ax0 d(t−(2i+1)t0), (19)

where t0 is equal to x0/C0.
Like W1(v), the transfer function W2(v) is large at certain frequencies. These frequencies

are here equal to fm =(2m+1)/4t0 where m is an integer. Stell and Bernhard [12] showed
that the active control is limited at these frequencies because the evanescent modes are
largely excited. These considerations were verified experimentally by Laugesen and
Johannesen [13].

Like W1(t), the weighting function W2(t) is long. In an on-line system, this weighting
function must be truncated. In the next section, it is shown that this truncation limits the
efficiency of the active control in narrow bands of frequencies. The calculations are
developed only for the independent reference signal (weighting function W2(t)) but could
be adapted for the case with feedback (weighting function W1(t)).

3. TRUNCATION OF THE WEIGHTING FUNCTION

If an active control system is constrained to act causally and on-line, there is not
complete freedom of choice of the weighting function W(t). The first constraint, coming
from the causality, imposes a zero function for negative times:

W(t)=0, tQ 0. (20)

Once the sampling rate is fixed, the digital filtering and adaptation must be performed in
a computation time less than the sampling period. If this constraint is satisfied, the system
is said to be on-line. The computation time depends directly on the number of coefficients
of the FIR filters that represent, in the filtered X-LMS, on the one hand the weighting
function of the controller and on the other hand the secondary path. In short an on-line
active system imposes a maximum number of coefficients for the digital filters and a finite
time length for the impulse responses. With tw denoting the finite time length of the
weighting function W(t), one has

W(t)=0, tq tw . (21)
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3.1.      

Consider first an approximate solution Wo
2(t) that is the result of the truncation of the

solution W2(t) with infinite time response:

Wo
2(t)=W2(t) for 0E tE tw , Wo

2(t)=0 for tQ 0 or tq tw . (22)

The expression for Wo
2(t) is found easily to be

Wo
2(t)=−2 s

Mw

l=0

e−(2i+1)ax0(−1)i d(t−(2i+1)t0), (23)

where Mw =E[12(tw/t0)− 1
2], in which E[X] is the largest integer not greater than X.

The expressions for Wo
2(v) and qs(v) can be deduced as

Wo
2(v)=−2 s

Mw

i=0

e(2i+1)jk	 x0(−1)i =−2ejk	 x0
1−e2(Mw +1)jk	 x0(−1)Mw +1

1+e2jk	 x0

=
[1−e2(Mw +1)jk	 x0(−1)Mw +1]

cos (k	 x0)
, (24)

qs(v)=−qp(v)[1−e2(Mw +1)jk	 x0(−1)Mw +1]/cos (k	 x0). (25)

The modulus of the residual error signal E(v) with an omnidirectional sensor is

=E(v)== =p(x, v)== bqp(v)
S

Zp(x, v)+
qs(v)

S
Zs(x, v)b= =qp(v)=

S
=Zp(x, v)=e−2(Mw +1)ax0.

(26)

If Mw w 1 then Mw +11 1
2C0tw/x0 and equation (26) becomes

=E(v)== {=qp(v)=/S}=Zp(x, v)=e−C0twa. (27)

The active attenuation is now defined as the modulus of the ratio of the error signal
without control to the error signal with control. Its expression in decibels is

g(v)=20 log10 [=qp(v)==Zp(x, v)=/S=E(v)=]=8·7×C0twa (dB). (28)

The expression for the active attenuation shows that it is independent of the angular
frequency v and of the location x of the error sensor. It is independent of the location
x0 of the secondary source as well. Equation (28) shows that the active attenuation can
be improved by two means: a larger loss coefficient a or a longer time length tw .

Figure 3. Principle of control with the approximate solution (Mw =1, a=0).
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The principle of control by the approximate weighting function Wo
2 is explained by an

example in Figure 3, where Mw and a are chosen equal to 1 and 0 respectively. As is shown
in Figure 3, when a primary wave (in black) passes the secondary source (2), this secondary
source emits a wave of the same amplitude but opposite sign in order to cancel out the
primary excitation. At the same time a wave is also emitted upstream. It is reflected at
the upstream termination and cancelled again by the control of the secondary source (3).
This process continues as long as the weighting function of the controller is non-zero.
When the time after the first emission exceeds the time length tw , the control is impossible
and the wave escapes downstream (4).

In Figure 3, the loss coefficient is zero and the control is useless. The amplitude of the
outgoing wave is indeed equal to the amplitude of the ingoing primary wave (see (1) and
(5)). Practically, the active attenuation is positive thanks to the positive loss coefficient.
The attenuation comes indeed from the loss over the acoustic path covered by the wave.
Since this acoustic path is potentially increased by the control, an active attenuation is
possible.

3.2.      

The solution Wo
2 that has been determined is approximate. One can now find the optimal

solution W*2 of the minimization problem.
The terms of the problem are as follows. The primary volume velocity qp(t) is now

supposed to be a stationary random excitation of power spectral density Sq(v). One is
interested in the calculation of the expected value E[p2(x, t)] of the squared sound pressure
measured at the error sensor.

The expression for the sound pressure p(x, t) can first be written as

p(x, t)=
1
S g

a

0

qp(t− t)Zp(x, t) dt+
1
S g

a

0

qs(t− t)Zs(x, t) dt. (29)

The weighting function W(t) of the controller is the variable of the problem of
minimization. This weighting function filters the reference signal, here equal to the volume
velocity qp(t), to give the volume velocity qs(t) of the secondary source:

qs(t)=g
tw

0

qp(t− t)W(t) dt. (30)

Equations (29) and (30) give

p(x, y)=
1
S g

a

0

qp(t− t)Zp(x, t) dt

+g
tw

0 $1S g
a

0

qp(t− t1 − t2)Zs(x, t1) dt1%W(t2) dt2. (31)

Upon defining the functions

d(t)=
1
S g

a

0

qp(t− t)Zp(x, t) dt, k(t)=
1
S g

a

0

qp(t− t)Zs(x, t) dt, (32)
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equation (31) can be rewritten as

p(x, t)= d(t)+g
tw

0

k(t− t)W(t) dt. (33)

The minimization problem, whose solution will be denoted by W*2 can be written as

min
W

J(W)=E[p2(x, t)]=E$0d(t)+g
tw

0

k(t− t)W(t) dt1
2

%. (34)

The function J(W) is a quadratic form,

J(W)= c+2 g
tw

0

W(t)b(t) dt+g
tw

0 g
tw

0

W(t2)a(t2 − t1)W(t1) dt1 dt2, (35)

where

c=E[d2(t)]=
1
S2

1
2p g

a

−a

=Zp(x, v)=2Sq(v) dv,

b(t)=E[k(t− t)d(t)]=
1
S2

1
2p g

a

−a

Zp(x, v)Z� s(x, v)Sq(v) e−jvt dv,

a(t)=E[k(t)k(t+ t)]=
1
S2

1
2p g

a

−a

=Zs(x, v)=2Sq(v) e−jvt dv. (36)

The weighting function W*2 (t) that minimizes J satisfies the Wiener–Hopf integral equation

b(t)+g
tw

0

a(t− t)W*2 (t) dt=0, [t$[0, tw ]. (37)

If the stationary random signal is a white noise, the power spectral density Sq(v) is
independent of frequency, denoted by Sq(v)=Ap .

Now suppose in the rest of the calculation that the loss coefficient a is small with respect
to 1/l. In this case, the primary and secondary paths have the simple forms

Zp(x, v)= r0C0 ejk	 x, Zs(x, v)= r0C0 ejk	 x cos (k	 x0). (38)

One can now calculate b(t) and a(t) as

b(t)=Ap0r0C0

S 1
2

$ 1
2p g

a

−a

cos (k	
–
x0) e−jvt dv% e−2ax

=Ap0r0C0

S 1
2

$eax0

2
d0t−

x0

C01+
e−ax0

2
d0t+

x0

C01%e−2ax,
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a(t)=Ap0r0C0

S 1
2

$ 1
2p g

a

−a

=cos (k	 x0)=2 e−jvt dv% e−2ax

=Ap0r0C0

S 1
2

$ch (2ax0)
2

d(t)+
1
4

d0t−
2x0

C01+
1
4

d0t+
2x0

C01% e−2ax. (39)

Equations (37) and (39) give

(eax0/2) d(t− t0)+ (ch (2ax0)/2)W*2 (t)1[0, tw](t)+ 1
4W*2 (t−2t0)1[2t0, tw](t)

+ 1
4W*2 (t+2t0)1[0, tw −2t0](t)=0, [t$[0, tw ], (40)

where 1[a, b](t) is the characteristic function equal to one if t$[a, b] and equal to zero
elsewhere.

W*2 (t) is found in the form

W*2 (t)= s
Mw

i=0

ai d(t−(2i+1)t0). (41)

The coefficients ai satisfy the following system of equations

−eax0/2 = [ch (2ax0)/2]a0 + 1
4a1,

0 = 1
4a0 + [ch (2ax0)/2]a1 + 1

4a2,
··· = ···

···
···

0 = 1
4ai + [ch (2ax0)/2]ai+1 + 1

4ai+2,
··· = ···

···
···

0 = 1
4aMw −2 + [ch (2ax0)/2]aMw −1 + 1

4aMw

0 = 1
4aMw −1 + [ch (2ax0)/2]aMw . (42)

The coefficients ai satisfy a recursion series,

ai =−2ch (2ax0)ai+1 − ai+2, (43)
with

aMw −1 =−2ch (2ax0)aMw . (44)

The general coefficient aMw − i takes the form

aMw − i =(−1)i[A e2iax0 +B e−2iax0] (45)

with

A= aMw e2ax0/2sh (2ax0), B=−aMw e−2ax0/2sh (2ax0). (46)

The series has the expression:

aMw − i =(−1)i sh [2(i+1)ax0]
sh [2ax0]

aMw . (47)

The first equality of the system (42) gives also

−
eax0

2
= (−1)Mw

sh [2(Mw +2)ax0]
4sh [2ax0]

aMw . (48)
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The two equations (47) and (48) lead to:

aMw − i =2(−1)Mw − i+1 sh [2(i+1)ax0]
sh [2(Mw +2)ax0]

eax0 . (49)

The following formula is then deduced:

ai =2(−1)i+1 sh [2(Mw − i+1)ax0]
sh [2(Mw +2)ax0]

eax0 . (50)

Consider now the following borderline cases.
Infinite time length Mw:a. The relevant formula for W2(t) is that when there is no

constraint on the time length of the weighting function. The expression for ai is then found
to be

ai =2(−1)i+1 e−(2i+1)ax0. (51)

Note here the coefficients for the expression for W2(t) in equation (19).
Waveguide with no loss, a:0. This case corresponds to a waveguide with perfectly rigid

walls and no boundary layer attenuation. One can compare the results for Wo
2(t) and

W*2 (t): for Wo
2(t)

ai =2(−1)i+1; (52)

for W*2 (t),

ai =2(−1)i+1(Mw − i+1)/(Mw +2). (53)

The principle of control with the optimal solution is presented in Figure 4 with Mw and
a equal to 1 and 0 respectively. To simplify the problem, consider a primary excitation
of amplitude 1 (1). A secondary wave of amplitude −2/3 is emitted (2) in order to control
partially the primary wave. A secondary wave of same amplitude is emitted also upstream
and is reflected at the upstream termination. When this wave passes the secondary source
(3), this source emits a wave of amplitude 1/3 and controls partially the outgoing wave.
A secondary wave of amplitude 1/3 is emitted also upstream and is reflected at the
upstream termination. It escapes then downstream (5) because the time length of the
weighting function is exceeded.

With the optimal controller, there are three outgoing waves of amplitude 1/3 or −1/3.
The results in terms of energy (the square of the amplitude) give an energy equal to
3[1/3]2 =1/3.

With the approximate controller, there is a single outgoing wave of amplitude 1: i.e.,
an energy equal to 1.

Figure 4. Principle of control with the optimal solution (Mw =1, a=0).



.   . 138

It is verified that the control with the optimal controller is more efficient than the control
with the approximate weighting function first proposed.

3.3.      

In the previous section, the expression for the optimal weighting function W*2 (t) has
been determined as

W*2 (t)=−2ax0 s
Mw

i=0

(−1)i sh [2(Mw − i+1)ax0]
sh [2(Mw +2)ax0]

d(t−(2i+1)t0). (54)

In order to evaluate the active attenuation with respect to frequency, it is necessary to
calculate the Fourier transform of W*2 (t). The details of the calculation of the transfer
function W*2 (v) are presented in Appendix B. Its expression is

W*2 (v)=−
sh [2(Mw +1)ax0]+ e2jkx0sh [2(Mw +2)ax0]+ e2(Mw +2)jkx0(−1)Mwsh [2ax0]

(1+e2jk	 x0) cos (k	
–
x0)sh [2(Mw +2)ax0]

.

(55)

The power spectral density of the sound pressure p(x, t) is

Sp(x, v)= [Sq(v)/S2]=Zp(x, v)+W*2 (v)Zs(x, v)=2

= (Ap/S2)=Zp(x, v)2=1+W*2 (v) cos (k	 x0)=2. (56)

The active attenuation g(v) is defined as the ratio of the power spectral density
Sp(x, v) without control to this power spectral density with control. Its expression in
decibels is

g(v)=20 log10 $ 1
=1+W*2 (v) cos (k	 x0)=% . (57)

When a:0 (i.e., waveguide without any loss), the expression for the attenuation takes the
simplified form

g(v)=20 log10 $ 2(Mw +2)=cos (kx0)=
=1− (−1)Mw e2(Mw +2)jkx0=% . (58)

The acoustic attenuation remains independent of the location x of the error microphone.
Whereas the acoustic attenuation with the approximate controller Wo

2 was also
independent of the angular frequency v and of the location x0 of the secondary source,
the acoustic attenuation with the optimal controller W*2 depends now on the frequency
and on the location of the secondary source. The minima of this attenuation are found
at the frequencies fm of section 2.

Equation (58) shows that no attenuation can be achieved at these frequencies for any
time length tw if the loss coefficient a is zero. When the loss coefficient a is positive, the
acoustic attenuation is small at these frequencies fm but can be increased with the time
length tw .
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As was said in section 2, the frequencies fm correspond also to a large transfer function
of the controller. Evanescent modes can be largely excited and the active attenuation is
limited. The work presented here points out that the truncation of the weighting function
reduces as well the active attenuation in narrow bands of frequencies centered around these
frequencies fm .

Applications. Consider the dimensions a and x0 equal 0·1 m and 0·5 m respectively, and
the speed of sound equal to 344 m s−1. The walls of the waveguide are supposed to be
perfectly rigid. The losses come then mainly from the boundary layer attenuation. The
expression of the loss coefficient due to the boundary layer attenuation is
2·38×10−5zv/a m−1 [14]. Since a loss coefficient independent of frequency is being used,
one chooses for a the loss coefficient at 500 Hz at the center of bandwidth (0–1000) Hz
of the study. The value for a is therefore 1·33×10−2 m−1. Figure 5 shows the attenuation
g(x, v) as a function of frequency. The frequencies fm are equal to (2m+1)×172 Hz.

4. EFFECT OF SAMPLING RATE

Here the effect of the sampling rate on the active attenuation is considered. Let tg denote
the period between two samples. The sampling frequency is therefore equal to 1/tg .

When a continuous signal is sampled a problem arises when this signal contains
frequencies which are higher than half the sampling frequency [5]. High frequencies are
indeed indistinguishable from lower frequencies. This phenomenon is called aliasing. This
is why these high frequencies are usually filtered out by an anti-aliasing filter in the
analogue signal before its conversion into digital form. The ideal transfer function of this
ideal anti-aliasing filter is equal to 1[−vg/2, vg/2](v) where the angular frequency vg is equal
to 2p/tg . In order to take into account the use of an anti-aliasing filter, a new transfer
function Wg

2(v) of the controller is introduced. Its expression is

Wg
2(v)=W*2 (v)1[−vg/2, vg/2](v). (59)

The interpretation of equation (59) is that the use of anti-aliasing filters forbids any control
at frequencies higher than half the sampling frequency.

Figure 5. Acoustic attenuation g(v) with a time length tw varying from 25 ms to 400 ms.
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These two characteristic times (the time length of the weighting function tw and the
(sampling rate tg) introduced previously, are actually not independent. In order to point
out their dependence, one must introduce the maximum number fDSP of multiplications that
the processor can perform per second. tgfDSP is the maximum number of multiplications
performed by the processor during a sampling period.

For an adaptive algorithm like X-LMS, the number of multiplications required during
a sampling period is equal to Ns +2Nw where Ns and Nw are the number of coefficients
of the digital filters representing the weighting functions of the secondary path Zs(t) and
the controller W(t) respectively. The constraint coming from an on-line system has
therefore the following expression:

Ns +2Nw E tg fDSP . (60)

The time length is equal to the number of coefficients of the digital filter multiplied by the
sampling period tg . If the time length used for the secondary path is noted ts , the inequality
(60) gives

ts +2tw E t2
g fDSP . (61)

The objective of the next section is to optimize the parameters (tw , tg) of the control if the
speed of the DSP is known. The lengths of the weighting functions are therefore
maximized:

ts +2tw 1 t2
g fDSP . (62)

In order to simplify the problem, equal time lengths will be considered, and therefore in
the rest of this study the equation

3tw 1 t2
g fDSP (63)

is used.

5. OPTIMIZATION OF SAMPLING RATE AND TRUNCATION

In this section, the primary signal is a white noise convolved with an ideal low pass filter
of cut-off frequency 1/tf . This situation corresponds to practical cases in ventilation ducts
where the primary excitation is mainly composed of low frequency components. The power
spectral density Sq(v) of the primary signal is now equal to Ap1[−vf, vf](v) where vf is equal
to 2p/tf .

The power spectral density of the sound pressure Sp(x, v) with the transfer function
Wg

2(v) of the controller, with the effects of truncation and sampling simultaneously taken
into account, is

Sp(x, v)= (Sq(v)/S2)=Zp(x, v)+Wg
2(v)Zs(x, v)=2

= (Ap/S2)=Zp(x, v)=2=1+Wg
2(v) cos (k	 x0)=21[−vf, vf](v)

=Ap(r0C0/S)2 e−2ax=1+Wg
2(v) cos (k	 x0)=21[−vf, vf](v). (64)

By using this expression for the power spectral density of the sound pressure, one finds
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J(W2
g ), representing the expected value of the squared sound pressure with the transfer

function Wg
2(v) of the controller:

J(Wg
2)=E[p2(x, t)]=

1
2p g

a

−a

Sp(x, v) dv

=Ap0r0C0

S 1
2e−2ax

2p g
vf

−vf

[1+Wg
2(v) cos (k	 x0)=2 dv. (65)

By introducing the expression for the transfer function Wg
2(v) in equation (65), J(Wg

2)
can be determined (see Appendix C) as

J(Wg
2)=Ap0r0C0

S 1
2

e−2ax62tf
−

2
tmax

sh [2(Mw +1)ax0]
sh 2(Mw +2)ax0]

e2ax07. (66)

Here tmax =max (tf , 2tg) and it has been supposed that the ratio 2t0/tmax is an integer, in
order to simplify the expression for the objective function. If this ratio is not an integer
but large enough, this expression gives a good estimate of J(Wg

2).
The active attenuation g can now be found. This is the ratio of the value of the objective

function without control to its value with control. Its expression in decibels is

g=10 log10 [J(0)/J(Wg
2)]=−10 log10 $1−

tf

tmax

sh [2(Mw +1)ax0]
sh [2(Mw +2)ax0]

e2ax0% . (67)

One can now introduce four non-dimensional numbers:

Tw = tw/t0 (time length), Tg = tg/tf (sampling period);

a0 = ax0 (loss coefficient), VDSP = t2
f fDSP/t0 (speed of the processor). (68)

The active attenuation g depends on three of them (Tg , Tw and a0):

g=−10 log10 [1−Gg(Tg)Gw (Tw , a0)]. (69)

Gg(u)=
1

max (1, 2u)
, Gw(u, a0)= e2a0

sh {2[Mw(u)+1]a0}
sh {2[Mw(u)+2]a0}

, Mw(u)=E$u2−
1
2% .

(70)

Equation (69) shows clearly that the active attenuation g depends separately on two
factors: the non-dimensional sampling period Tg and the non-dimensional time length Tw

of the weighting function. Their respective effects are summed up in the variations of the
functions Gg and Gw . These variations are presented in Figure 6. On the one hand the
function Gg decreases from 1 to 0 when the non-dimensional sampling period increases.
On the other hand the function Gw increases from 0 to 1 when the non-dimensional time
length of the controller increases. Whereas Gg is independent of the non-dimensional loss
coefficient a0, Gw is all the larger since this loss coefficient is large. It is known indeed that
a large loss coefficient reduces the detrimental effect of the upstream reflection. At first
sight, the optimal set-up point consists of a small non-dimensional sampling period Tg and
a long non-dimensional time length Tw . Unfortunately, when the active system is
constrained to act on-line, equation (63) must be satisfied and it forbids this ideal set-up
point.
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Figure 6. Variations of the functions Gg(u) and Gw(u). ——; a0=0; ——; a0=0·1 (a) VDSP =50; (b) VDSP =5.

Equation (63) can be rewritten, however, as a function of the non-dimensional numbers,

3Tw =T 2
gVDSP . (71)

For any non-dimensional speed VDSP of the DSP and any non-dimensional loss
coefficient a0, there is however an optimal set-up point in the plane (Tw , 1/Tg). Using the
constraint (71) for an on-line system, g can be expressed as a function of Tg only. The
acoustic attenuation g can then be maximized with respect to the non-dimensional
sampling period Tg . For any VDSP and a0, a maximum can be determined with the
corresponding solution for Tg (see Figure 7).

Two types of configurations can be identified as functions of the value of VDSP .
The first type occurs when the non-dimensional speed of the processor VDSP is greater

than 12 (see the first example of Figure 7). In this case the acoustic attenuation g increases
with the non-dimensional sampling period Tg in the segment [0, 0·5] because Gg(Tg) is
constant and Gw(1

3T
2
gVDSP , a0) increases with Tg . Since VDSP q 12, when Tg is equal to 0·5,

the non-dimensional time length Tw is greater than 1 and the acoustic attenuation g is
strictly positive. For Tg greater than 0·5 approximately, it is demonstrated in Appendix
D that the acoustic attenuation decreases with Tg .

The second type of configuration occurs when the non-dimensional speed of the
processor VDSP is less than 12 (see the second example of Figure 7). In this case there is

no positive acoustic attenuation until Tg is equal z3/VDSP (i.e., the non-dimensional time

length Tw is equal to 1). For Tg greater than z3/VVSP it can be demonstrated, as in the
previous case, that the acoustic attenuation decreases with Tg .

Figure 7. Acoustic attenuation g with respect to the non-dimensional time length Tg . Key as Figure 6.
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Figure 8. Optimal non-dimensional numbers (Tw , 1/Tg) as functions of VDSP .

Figure 8 sums up the results for the variations of the optimal parameters of control in
the plane (Tw , 1/Tg) as a function of VDSP . For small values of VDSP , the non-dimensional
time length Tw must be fixed to 1 and the non-dimensional sampling rate increases with
the non-dimensional speed of the processor. A transition occurs when VDSP is equal to 12.
This value corresponds to the point (1, 2) in the plane (Tw , 1/Tg). When the
non-dimensional sampling frequency is high enough (i.e., it is equal to 2), it becomes
useless to increases it more. The control is then improved by lengthening the
non-dimensional time Tw . It should be underlined that most of the applications of active
control concern a non-dimensional speed VDSP that is greater than the critical value equal
to 12.

One can now examine the influence of the non-dimensional loss coefficient a0. It is found
on the one hand that the presence of loss does not modify the value of the optimal
parameter Tg . On the other hand, the active attenuation is improved by the presence of
loss.

The acoustic attenuation g can now be defined for the optimal couple parameters
(1/Tg , Tw) determined previously:

g=−10 log10 [1−Gg(z3/VDSP)Gw(1, a0)], VDSP E 12,

g=−10 log10 [1−Gw(VDSP/12, a0)], VDSP e 12. (72)

It is noticeable that this attenuation depends now on only two non-dimensional
parameters, VDSP and a0. The variations of g with respect to the non-dimensional speed
of the processor VDSP are presented in Figure 9 for a0 equal to 0 and 0·1 respectively. These
curves confirm that the two parameters VDSP and a0 must be chosen as large as possible
in order to get the maximum acoustic attenuation. Consider now the asymptotic variations
of g when the parameter VDSP is large. Note now that Mw =Mw(VDSP/12) and VDSP q 12.
One has

g=−10 log10 $(1−e−4a0)
e−4a0(Mw +1)

1−e−4a0(Mw +2)% . (73)

Suppose that VDSP�12. This leads to

g=−10 log10 $(1−e−4a0)
e−1

6
a0VDSP

1−e−1
6
a0VDSP% . (74)



.   . 144

Figure 9. Acoustic attenuation g as a function of VDSP . Key as Figure 6.

Consider now two cases of the values of the product a0VDSP :

g=10 log10 [VDSP/24], a0VDSP�6;

g=0·72a0VDSP −10 log10[1−e−4a0], a0VDSP�6. (75)

The asymptotic variations of g when the parameter VDSP is large are then

g0 10 log10 (VDSP), a0 =0; g0 0·72a0VDSP , a0 q 0. (76, 77)

It is noticed that the presence of loss changes radically the asymptotic behaviour of the
system. Without loss the non-dimensional speed of the processor must be increased by a
factor of 10 to get 10 dB of additional attenuation. With the presence of loss, the number
of decibels of attenuation increases linearly with VDSP .

The two non-dimensional parameters VDSP and a0 themselves depend on four parameters:
a, tf , fDSP and x0 (or t0). One can comment on their respective influence on the active
attenuation as follows.

The loss coefficient a enters into the expression of a0. This loss coefficient should be
increased with the help of absorbent materials for example. Losses reduce the detrimental
effect of the upstream reflection.

The characteristic time tf of the primary signal enters into the expression for VDSP . Its
influence is very important since VDSP depends on this squared time. The acoustic
attenuation will be better if the primary signal is limited to low frequencies.

The speed of the processor fDSP enters also into the expression for VDSP . Faster processors
are required to reach higher levels of active attenuation.

The location of the secondary source enters simultaneously into the expression of VDSP

and a0.
The optimal location for the secondary source is found at the location of the primary

source. a0 is then equal to zero and VDSP is infinite. The asymptotic expression (76) is then
valid and the active attenuation is infinite. Unfortunately, the constraint of causality
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combined with electrical delays imposes a minimum distance x0 between the primary and
the secondary source. For a waveguide without loss, a0 is again equal to zero and the active
attenuation depends only on the non-dimensional parameter VDSP . This leads to the fact
that the secondary source should be located as near as possible to the primary source in
order to maximize VDSP and the active attenuation g. For a lossy waveguide, the placement
of the secondary source is not as obvious as previously. An increase of x0 leads indeed
to two changes of the non-dimensional parameters (reduction VDSP and increase of a0) that
have contrary effects on the active attenuation. Consider the product a0VDSP of equations
(75). The non-dimensional parameters are replaced by the real quantities that compose
them:

a0VDSP = aC0t2
f fDSP . (78)

Equation (78) shows that this product is independent of the location of the source x0. One
can now distinguish two different behaviours as functions of the product a0VDSP . If
a0VDSP�6 then the active attenuation depends only on the non-dimensional parameter
VDSP . This leads to the fact that the secondary source should be located as near as possible
to the primary source in order to maximize VDSP and the active attenuation g. This case
is similar to a non-lossy waveguide. If a0VDSP�6 then the active attenuation depends only
on the non-dimensional parameter a0 and on the product a0VDSP . Since the latter product
is independent of the location of the secondary source, the secondary source should be
located as near as possible to the primary source in order to minimize a0 and maximize
the active attenuation g. It should be underlined that the term −10 log10 [1−e−4a0] is less
than 2 dB when a0 q 1

4. This means that all the locations whose co-ordinate x0 is greater
than 1/4a can be considered equivalent in terms of active attenuation.

6. CONCLUSIONS

Three active noise control systems for a plane sound wave in a finite lossy waveguide
have been reviewed: the active system with feedback and omnidirectional sensors; the
active system with feedback and unidirectional sensors; the active system with an
independent reference signal. For the first and third systems, the controller has a long time
response. The truncation of the weighting function can therefore greatly reduce the active
attenuation. When the active control system is constrained to act on-line, the optimal
truncated weighting function has been determined for an independent reference signal. It
has been pointed out that a controller, acting with this weighting function, provides an
active attenuation that is limited in narrow bands of frequencies. These frequencies
correspond to a large transfer function of the controller.

The active attenuation with the combined effects of sampling and truncation has also
been determined. The sampling imposes the use of anti-aliasing filters and no attenuation
can be achieved at frequencies greater than half the sampling frequency.

The optimal set-up point of the time length and of the sampling rate of the controller
has been found. It is shown that the active attenuation depends on two non-dimensional
parameters if the system is optimized. These non-dimensional parameters themselves
depend on four practical parameters, which are the characteristic time of the primary
signal, the speed of the processor, the loss coefficient in the waveguide and the location
of the secondary source.

It has been shown that the secondary source should be located as near as possible to
the primary source for a lossy or a non-lossy waveguide. For a lossy waveguide and when
the speed of the processor is large, all the locations of the secondary source beyond a
critical point are equivalent in terms of active attenuation.
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APPENDIX A: DETERMINATION OF THE SOUND PRESSURE FIELD

To find the solution p(x, v) of the differential equations (2), one can first write p(x, v)
as

p(x, v)=B+ ejk	 x +B− e−jk	 x [xe x0,

p(x, v)=A+ ejk	 x +A− e−jk	 x [xE x0, (A1)

where A+, A−, B+ and B− are constants to be determined by the boundary conditions. The
boundary condition at x=0 gives

A+ −A− =
r0C0

1+ jC0a/v
qp(v)

S
. (A2)

The boundary condition at x=a gives

B− =0. (A3)

The continuity of sound pressure at x= x0 gives

B+ ejk	 x0 =A+ ejk	 x0 +A− e−jk	 x0. (A4)

The discontinuity of the first derivative of sound pressure at x= x0 gives

B+ ejk	 x0 −A+ ejk	 x0 +A− e−jk	 x0 =
r0C0

1+ jC0a/v
qs(v)

S
. (A5)
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The solution of the system of equations (A2)–(A5) gives, for qs equal to zero,

A+ =B+ =
r0C0

1+ jC0a/v
qp(v)

S
, A− =B− =0. (A6)

The solution of the system of equations (A2)–(A5) gives, for qp equal to zero,

B+ =
r0C0

1+ jC0a/v
qs(v)

S
cos (k	 x0), B− =0, A+ =A− =

ejk	 x0

2 cos (k	 x0)
B+. (A7)

These results lead to the solution

p(x, v)= [qp(v)/S]Zp(x, v)+ [qs(v)/S]Zs(x, v),

Zp(x, v)=
r0C0

1+ jC0a/v
ejk	 x [x, Zs(x, v)=Zp(x, v) cos (k	 x0) [xe x0,

Zs(x, v)=Zp(x0, v) cos (k	 x) [xE x0. (A8)

APPENDIX B: CALCULATION OF W*2 (v)

The optimal weighting function W*2 (t) has the expression

W*2 (t)=−2eax0 s
Mw

m=0

(−1)m sh [2(Mw −m+1)ax0]
sh [2(Mw +2)ax0]

d(t−(2m+1)t0). (B1)

The Fourier transform of W*2 (t) is

W*2 (v)=−2
ejk	�x0

sh [2(Mw +2)ax0]
s
Mw

m=0

(−1)m sh [2(Mw −m+1)ax0] e2mjkx0

=−
ejk	�x0

sh [2(Mw +2)ax0]
s
Mw

m=0

(−1)m[e2(Mw +1)ax0 e2mjk	 x0 − e−2(Mw +1)ax0 e2mjk	�x0]

=−
ejk	�x0

sh [2(Mw +2)ax0] 6e2(Mw +1)ax0
1+ (−1)Mw e2(Mw +1)jk	 x0

1+e2jk	 x0

− e−2(Mw +1)ax0
1+ (−1)Mw e2(Mw +1)jk	�x0

1+e2jk	�x0 7
=−

2 ejk	�x0

sh [2(Mw +2)ax0](1+e2jk	 x0)(1+e2jk	�x0)
{sh [2(Mw +1)ax0]

+ e2jkx0 sh [2(Mw +2)ax0]+ e2(Mw +2)jkx0(−1)Mw sh [2ax0]}, (B2)
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or

W*2 (v)=−
sh [2(Mw +1)ax0]+ e2jkx0 sh [2(Mw +2)ax0]+ e2(Mw +2)jkx0(−1)Mw sh [2ax0]

(1+e2jk	 x0) cos (k	�x0) sh [2(Mw +2)ax0]
.

(B3)

APPENDIX C: CALCULATION OF J(Wg
2)

J(Wg
2), which represents the expected value of the squared sound pressure with the

transfer function Wg
2(v) of the controller is given by

J(Wg
2)=E[p2(x, t)]=

1
2p g

a

−a

Sp(x, v) dv

=Ap0r0C0

S 1
2 e−2ax

2p g
vf

−vf

=1+Wg
2(v) cos (k	 x0)=2 dv, (C1)

where

Wg
2(v)= 1[−vg/2, vg/2](v) s

Mw

m=0

am e(2m+1)jkx0. (C2)

The coefficients am are given by equation (50). Hence

J(Wg
2)=Ap0r0C0

S 1
2

e−2ax62tf
−

2
tmax

+
1
2p g

vmin

−vmin
b1+cos (k	 x0) s

Mw

m=0

am e(2m+1)jkx0b
2

dv7,
(C3)

with vmin =min (vg/2, vf) and tmax =max (2tg , tf). Let B(v) denote the expression
=1+cos (k	 x0) aMw

m=0 am e(2m+1)jkx0=2 to be integrated. To simplify the notations, one can
introduce also the coefficient aMw +1, which is equal to zero. One then has

B(v)= b1+
1
2

s
Mw

m=0

am(e−ax0 e(2m+2)jkx0 + eax0 e2mjkx0)b
2

= b1+
a0

2
eax0 +

1
2

s
Mw +1

m=1

(am eax0 + am−1 e−ax0) e2mjkx0b
2

=01+
a0

2
eax01

2

+01+
a0

2
eax01 s

Mw +1

m=1

(am eax0 + am−1 e−ax0) cos (2mjkx0)

+
1
2

s
Mw+1

m=1

s
m+1

n=1

(am eax0 + am−1 e−ax0)(an eax0 + an−1 e−ax0) cos (2(m− n)kx0)

+
1
4

s
Mw+1

m=1

(am eax0 + am−1 e−ax0)2. (C4)
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Suppose that the ratio 2t0/tmax is an integer so that the integral of equation (C3) can be
simplified. If this ratio is not integer but large enough the terms that are cancelled are small
with respect to the remaining terms.

1
2p g

vmin

−vmin

B(v) dv=
2

tmax 601+
a0

2
eax01

2

+
1
4

s
Mw +1

m=1

(am eax0 + am−1 e−ax0)27. (C5)

One can develop the series of equation (C5) and use the relations (42) to simplify it:

s
Mw +1

m=1

(am eax0 + am−1 e−ax0)2

=2 s
Mw +1

m=1

amam−1 +e2ax0 s
Mw +1

m=1

a2
m +e−2ax0 s

Mw +1

m=1

a2
m−1

= s
Mw +1

m=1

amam−1 + s
Mw

m=0

amam+1 +e2ax0 s
Mw +1

m=1

a2
m +e−2ax0 s

Mw

m=0

a2
m

= a0(e−2ax0a0 + a1)+ s
Mw

m=1

am(am−1 +2ch (2ax0)am + am+1)

=−2a0 eax0 − a2
0 e2ax0. (C6)

Equation (C5) can then be simplified:

1
2p g

vmin

−vmin

B(v) dv=
2

tmax 601+
a0

2
eax01

2

−
a0

2
eax0 −

a2
0

4
e2ax07=

2
tmax 61+

a0

2
eax07. (C7)

One can now rewrite J(Wg
2):

J(Wg
2)=Ap0r0C0

S 1
2

e−2ax62tf
−

2
tmax

+
2

tmax 01+
a0

2
eax01

=Ap0r0C0

S 1
2

e−2ax62tf
+

a0

tmax
eax07

=Ap0r0C0

S 1
2

e−2ax62tf
−

2
tmax

sh [2(Mw +1)ax0]
sh [2(Mw +2)ax0]

e2ax07. (C8)

APPENDIX D: VARIATIONS OF g WITH Tg

Suppose that VDSP is greater than 12 and that the non-dimensional sampling period Tg

is greater than 0·5. One can then show that the acoustic attenuation decreases with Tg .
Consider Tg in the segment [z3(2Mw +1)/VDSP, z3(2Mw +3)/VDSP] where Mw is an

integer. This case corresponds to a non-dimensional time length in the segment
[2Mw +1, 2Mw +3]. Inside this segment the acoustic attenuation decreases with Tg since
Gw(1

3T
2
gVDSP , a0) is constant and Gg(Tg) decreases with Tg .
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Compare now the acoustic attenuation for the bounds of the segment. With the notation
GMw =Gg(z3(2Mw +1)/VDSP)Gw(2Mw +1, a0) and the ratio GMw/GMw +1, one has

GMw

GMw +1
=

sh [2(Mw +1)a0] sh [2(Mw +3)a0]
sh2 [2(Mw +2)a0] X2Mw +3

2Mw +1
. (D1)

One can show that the ratio GMw/GMw +1 is greater than 1, as follows.
With g(a0)= sh [2(Mw +1)a0] sh [2(Mw +3)a0]/sh2 [2(Mw +2)a0] one can show first that

g(a0)e g(0) for a0 e 0:

g(a0)=
e4(Mw +2)a0 + e−4(Mw +2)a0 − e4a0 − e−4a0

e4(Mw +2)a0 + e−4(Mw +2)a0 −2

=1−
1−ch [4a0]

1−ch [4(Mw +2)a0]
=1−

sh2 [2a0]
sh2 [2(Mw +2)a0]

. (D2)

With the notation f(a0)= sh [2a0]/sh [2(Mw +2)a0] and h(a0)= sh [2a0]− sh [2(Mw +2)a0],
the derivative of h(a0) is

(dh/da0)=2ch [2a0]−2(Mw +2) ch [2(Mw +2)a0]. (D3)

The derivative of h(a0) is negative for all a0. The function h(a0) decreases therefore with
a0. Consider positive real numbers a1 and a2 such that a2 e a1. Then

sh [2a2]− sh [2(Mw +2)a2]E sh [2a1]− sh [2(Mw +2)a1], (D4)

f(a2)−1E sh [2(Mw +2)a1]
sh [2(Mw +2)a2]

{ f(a1)−1}E f(a1)−1. (D5)

Hence

f(a2)E f(a1). (D6)

The function f(a0) decreases and g(a0) increases with a0. One deduces that

g(a0)e g(0) [a0 e 0. (D7)

With equation (D5) one can now write

GMw

GMw +1
e (Mw +1)(Mw +3)

(Mw +2)2 X2Mw +3
2Mw +1

. (D8)

Since for all positive integers Mw ,

(Mw +1)(Mw +3)
(Mw +2)2 X2Mw +3

2Mw +1
=X2M5

w +19M4
w +68M3

w +114M2
w +90Mw +27

2M5
w +17M4

w +56M3
w +88M2

w +64Mw +16
q 1,

(D9)

one concludes that

GMw/GMw +1 q 1. (D10)

The acoustic attenuation decreases therefore with the non-dimensional sampling period Tg .


